Scroll to navigation

zlanhp.f(3) LAPACK zlanhp.f(3)

NAME

zlanhp.f

SYNOPSIS

Functions/Subroutines


double precision function zlanhp (NORM, UPLO, N, AP, WORK)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Function/Subroutine Documentation

double precision function zlanhp (character NORM, character UPLO, integer N, complex*16, dimension( * ) AP, double precision, dimension( * ) WORK)

ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Purpose:


ZLANHP returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex hermitian matrix A, supplied in packed form.

Returns:

ZLANHP


ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters:

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANHP as described
above.

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
hermitian matrix A is supplied.
= 'U': Upper triangular part of A is supplied
= 'L': Lower triangular part of A is supplied

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHP is
set to zero.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangle of the hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
Note that the imaginary parts of the diagonal elements need
not be set and are assumed to be zero.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 119 of file zlanhp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0